客户端TCP状态迁移:
CLOSED->SYN_SENT->ESTABLISHED->FIN_WAIT_1->FIN_WAIT_2->TIME_WAIT->CLOSED服务器TCP状态迁移:CLOSED->LISTEN->SYN收到->ESTABLISHED->CLOSE_WAIT->LAST_ACK->CLOSED 各个状态的意义如下: LISTEN - 侦听来自远方TCP端口的连接请求; SYN-SENT -在发送连接请求后等待匹配的连接请求; SYN-RECEIVED - 在收到和发送一个连接请求后等待对连接请求的确认; ESTABLISHED- 代表一个打开的连接,数据可以传送给用户; FIN-WAIT-1 - 等待远程TCP的连接中断请求,或先前的连接中断请求的确认;FIN-WAIT-2 - 从远程TCP等待连接中断请求; CLOSE-WAIT - 等待从本地用户发来的连接中断请求; CLOSING -等待远程TCP对连接中断的确认; LAST-ACK - 等待原来发向远程TCP的连接中断请求的确认; TIME-WAIT -等待足够的时间以确保远程TCP接收到连接中断请求的确认; CLOSED - 没有任何连接状态;
【注意】
在TIME_WAIT状态中,如果TCP client端最后一次发送的ACK丢失了,它将重新发送。TIME_WAIT状态中所需要的时间是依赖于实现方法的。典型的值为30秒、1分钟和2分钟。等待之后连接正式关闭,并且所有的资源(包括端口号)都被释放。【问题1】为什么连接的时候是三次握手,关闭的时候却是四次握手?答:因为当Server端收到Client端的SYN连接请求报文后,可以直接发送SYN+ACK报文。但是关闭连接时,当Server端收到FIN报文时,很可能并不会立即关闭SOCKET,所以只能先回复一个ACK报文,告诉Client端,"你发的FIN报文我收到了",(报文1,ACK,应答)只有等到我Server端所有的报文都发送完了,我才能发送FIN报文(报文2,FIN,服务器已经结束),因此不能一起发送。故需要四步握手。【问题2】为什么TIME_WAIT状态需要经过2MSL(Maximum Segment Lifetime,最大报文段生存时间)才能返回到CLOSE状态?答:虽然按道理,四个报文都发送完毕,我们可以直接进入CLOSE状态了,但是我们必须假象网络是不可靠的,有可以最后一个ACK丢失。
所以TIME_WAIT状态就是用来重发可能丢失的ACK报文。详细解析:先说第一点(要满足可靠连接的需要),
如果Client直接CLOSED了,那么由于IP协议的不可靠性或者是其它网络原因,导致Server没有收到Client最后回复的ACK。那么Server就会在超时之后继续发送FIN,此时由于Client已经CLOSED了,就找不到与重发的FIN对应的连接,最后Server就会收到RST而不是ACK,Server就会以为是连接错误把问题报告给高层。这样的情况虽然不会造成数据丢失,但是却导致TCP协议不符合可靠连接的要求。所以,Client不是直接进入CLOSED,而是要保持TIME_WAIT,当再次收到FIN的时候,能够保证对方收到ACK,最后正确的关闭连接。再说第二点(防止前后两次连接的数据包混淆),
如果Client直接CLOSED,然后又再向Server发起一个新连接,我们不能保证这个新连接与刚关闭的连接的端口号是不同的。也就是说有可能新连接和老连接的端口号是相同的。一般来说不会发生什么问题,但是还是有特殊情况出现:假设新连接和已经关闭的老连接端口号是一样的,如果前一次连接的某些数据仍然滞留在网络中,这些延迟数据在建立新连接之后才到达Server,由于新连接和老连接的端口号是一样的,又因为TCP协议判断不同连接的依据是socket pair,于是,TCP协议就认为那个延迟的数据是属于新连接的,这样就和真正的新连接的数据包发生混淆了。所以TCP连接还要在TIME_WAIT状态等待2倍MSL,这样可以保证本次连接的所有数据都从网络中消失。各种协议都是前人千锤百炼后得到的标准,规范。
从细节中都能感受到精巧和严谨。每次深入体会都有同一个感觉:精妙。
在TCP层,有个FLAGS字段,这个字段有以下几个标识:SYN, FIN, ACK, PSH, RST, URG.
其中,对于我们日常的分析有用的就是前面的五个字段。它们的含义是:
SYN表示建立连接,FIN表示关闭连接,ACK表示响应,PSH表示有DATA数据传输,RST表示连接重置。其中,
ACK是可能与SYN,FIN等同时使用的,比如SYN和ACK可能同时为1,它表示的就是建立连接之后的响应,如果只是单个的一个SYN,它表示的只是建立连接。TCP的几次握手就是通过这样的ACK表现出来的。
但SYN与FIN是不会同时为1的,因为前者表示的是建立连接,而后者表示的是断开连接。RST一般是在FIN之后才会出现为1的情况,表示的是连接重置。
一般地,当出现FIN包或RST包时,我们便认为客户端与服务器端断开了连接;而当出现SYN和SYN+ACK包时,我们认为客户端与服务器建立了一个连接。PSH为1的情况,一般只出现在 DATA内容不为0的包中,也就是说PSH为1表示的是有真正的TCP数据包内容被传递。TCP的连接建立和连接关闭,都是通过请求-响应的模式完成的。
概念补充-TCP三次握手:
TCP(Transmission Control Protocol)传输控制协议TCP是主机对主机层的传输控制协议,提供可靠的连接服务,采用三次握手确认建立一个连接:位码即tcp标志位,有6种标示:SYN(synchronous建立联机) ACK(acknowledgement 确认) PSH(push传送) FIN(finish结束) RST(reset重置) URG(urgent紧急)Sequence number(顺序码) Acknowledge number(确认码)在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接。
第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认; 第二次握手:服务器收到syn包,必须确认客户的SYN(ack=j+1),同时自己也发送一个SYN包(syn=k),即SYN+ACK包,此时服务器进入SYN_RECV状态;第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手。完成三次握手,客户端与服务器开始传送数据.
示例:第一次握手:主机A发送位码为syn=1,随机产生seq number=1234567的数据包到服务器,主机B由SYN=1知道,A要求建立联机;第二次握手:主机B收到请求后要确认联机信息,向A发送ack number=(主机A的seq+1),syn=1,ack=1,随机产生seq=7654321的包;第三次握手:主机A收到后检查ack number是否正确,即第一次发送的seq number+1,以及位码ack是否为1,若正确,主机A会再发送ack number=(主机B的seq+1),ack=1,主机B收到后确认seq值与ack=1则连接建立成功。完成三次握手,主机A与主机B开始传送数据。
这个协议非常重要,这里把它的链接和释放整理一下
首先是三次握手:
1、 客户端发起,像服务器发送的报文SYN=1,ACK=0,然后选择了一个初始序号:seq=x。
SYN是干什么用的?
在链接的时候创建一个同步序号,当SYN=1同时ACK=0的时候,表明这是一个连接请求的报文段。如果对方有意链接,返回的报文里面SYN=1,ACK=1,。从这个意义上来说,SYN=1的时候,就表明这是一个‘请求’或者‘接受请求’的报文。
SYN=1的报文段不能携带数据。但是要消耗掉一个序号,
ACK是干什么用的?
仅当ACK=1的时候,确认字号(期望收到对方下一个报文段的第一个数据字节的编号)才有效。因此,TCP规定,当链接建立之后,所有往来的报文里面的ACK都应该是1(事实上,也只有客户端发起的链接请求报文的ACK没有置1)。
现在的状态:客户端进入SYN-SEND状态;
2、 服务器接收到了SYN=1,ACK=0的请求报文之后,返回一个SYN=1,ACK=1的确认报文。
同时,确认号ack=x+1,同时也为自己选择一个初始序号seq=y
现在的状态:服务器进入SYN-REVD状态;
3、 客户端接收到了服务器的返回信息之后,还要给服务器返回最后一条确认,ACK=1,确认号ack=y+1;
现在的状态:客户端进入ESTABLISHED状态。
下面说一下为什么两次握手不行,非得三次:
首先说明一种正常的情况,就是客户端发送了一条请求链接的报文,但是由于网络原因丢失了,所以,不可能接收到服务器端的确认。这个时候,客户端就就只有再一次发送原来的请求报文,这次服务器收到之后返回确认,客户端再确认一次,链接确立。
然后考虑一种不正常的情况,客户端发了两次请求链接的报文,第二条被服务器捕捉到,返回数据,完成了两次握手。数据传送完成之后,链接关闭。但是这时候,第一条拥塞的请求报文现在到达了服务器端,服务器还以为客户端要又一次建立连接,于是发送确认,然后把自己敞开,等着客户端发送过来数据。于是,很多的网络资源就是这样浪费掉了。
要是实行三次握手,服务器收到了一条过期的请求报文,返回确认信息,客户端接收到了服务器的信息之后感到莫名其妙,心想:我他妈又没要链接,你返回这个是不是疯了。于是不置一词。服务器过一段时间还没有收到第三次握手的数据,知道客户端并没有要求建立链接的请求,含泪离开。
然后是四次挥手(four-way handshake):
现在双方的状态都是ESTABLISHED状态。
1、 客户端发起请求,请求断开链接。FIN=1,seq=u。u是之前传送过来的最后一个字节的序号+1。
FIN:用来释放一个链接,当FIN=1的时候,表明此报文的发送方已经完成了数据的发送,没有新的数据要传送,并要求释放链接。
客户端进入FIN-WAIT-1状态,等着服务器返回确认;
2、 服务器收到客户端的请求断开链接的报文之后,返回确认信息。ACK=1,seq=v,ack=u+1。
服务器进入CLOSE-WAIT状态。
这个时候,客户端不能给服务器发送信息报文,只能接收。但是服务器要是还有信息要传给服务器,仍然能传送。
3、 当服务器也没有了可以传的信息之后,给客户端发送请求结束的报文。FIN=1,ACK=1,
ack=u+1,seq=w。
这个时候的状态:服务器进入LAST-ACK状态。
4、 客户端接收到FIN=1的报文之后,返回确认报文,ACK=1,seq=u+1,ack=w+1。
发送完毕之后,客户端进入等待状态,等待两个时间周期。关闭。
为什么最后还要等待两个时间周期呢?
1、 客户端的最后一个ACK报文在传输的时候丢失,服务器并没有接收到这个报文。
这个时候服务器就会超时重传这个FIN消息,然后客户端就会重新返回最后一个ACK报文,等待两个时间周期,完成关闭。如果不等待这两个时间周期,服务器重传的那条消息就不会收到。服务器就因为接收不到客户端的信息而无法正常关闭。2、 预防上一次在三次握手中提到的失效的报文干扰。两个时间周期过去之后,所有的报文都会在网络中消失,保证下一次重新连接的时候有乱七八糟的报文影响。
下面看下大家一般比较关心的三种TCP状态
SYN_RECV
服务端收到建立连接的SYN没有收到ACK包的时候处在SYN_RECV状态。有两个相关系统配置:1、net.ipv4.tcp_synack_retries :INTEGER默认值是5对于远端的连接请求SYN,内核会发送SYN + ACK数据报,以确认收到上一个 SYN连接请求包。这是所谓的三次握手( threeway handshake)机制的第二个步骤。这里决定内核在放弃连接之前所送出的 SYN+ACK 数目。不应该大于255,默认值是5,对应于180秒左右时间。通常我们不对这个值进行修改,因为我们希望TCP连接不要因为偶尔的丢包而无法建立。2、net.ipv4.tcp_syncookies
一般服务器都会设置net.ipv4.tcp_syncookies=1来防止SYN Flood攻击。假设一个用户向服务器发送了SYN报文后突然死机或掉线,那么服务器在发出SYN+ACK应答报文后是无法收到客户端的ACK报文的(第三次握手无法完成),这种情况下服务器端一般会重试(再次发送SYN+ACK给客户端)并等待一段时间后丢弃这个未完成的连接,这段时间的长度我们称为SYN Timeout,一般来说这个时间是分钟的数量级(大约为30秒-2分钟)。这些处在SYNC_RECV的TCP连接称为半连接,并存储在内核的半连接队列中,在内核收到对端发送的ack包时会查找半连接队列,并将符合的requst_sock信息存储到完成三次握手的连接的队列中,然后删除此半连接。大量SYNC_RECV的TCP连接会导致半连接队列溢出,这样后续的连接建立请求会被内核直接丢弃,这就是SYN Flood攻击。
能够有效防范SYN Flood攻击的手段之一,就是SYN Cookie。SYN Cookie原理由D. J. Bernstain和 Eric Schenk发明。SYN Cookie是对TCP服务器端的三次握手协议作一些修改,专门用来防范SYN Flood攻击的一种手段。它的原理是,在TCP服务器收到TCP SYN包并返回TCP SYN+ACK包时,不分配一个专门的数据区,而是根据这个SYN包计算出一个cookie值。在收到TCP ACK包时,TCP服务器在根据那个cookie值检查这个TCP ACK包的合法性。如果合法,再分配专门的数据区进行处理未来的TCP连接。
观测服务上SYN_RECV连接个数为:7314,对于一个高并发连接的通讯服务器,这个数字比较正常。
CLOSE_WAIT发起TCP连接关闭的一方称为client,被动关闭的一方称为server。被动关闭的server收到FIN后,但未发出ACK的TCP状态是CLOSE_WAIT。出现这种状况一般都是由于server端代码的问题,如果你的服务器上出现大量CLOSE_WAIT,应该要考虑检查代码。TIME_WAIT
根据TCP协议定义的3次握手断开连接规定,发起socket主动关闭的一方 socket将进入TIME_WAIT状态。TIME_WAIT状态将持续2个MSL(Max Segment Lifetime),在Windows下默认为4分钟,即240秒。TIME_WAIT状态下的socket不能被回收使用. 具体现象是对于一个处理大量短连接的服务器,如果是由服务器主动关闭客户端的连接,将导致服务器端存在大量的处于TIME_WAIT状态的socket, 甚至比处于Established状态下的socket多的多,严重影响服务器的处理能力,甚至耗尽可用的socket,停止服务。
建立连接:
理解:窗口和滑动窗口
TCP的流量控制,TCP使用窗口机制进行流量控制什么是窗口?连接建立时,各端分配一块缓冲区用来存储接收的数据,并将缓冲区的尺寸发送给另一端,接收方发送的确认信息中包含了自己剩余的缓冲区尺寸剩余缓冲区空间的数量叫做窗口
2. TCP的流控过程(滑动窗口)
参考文章:
http://www.cnblogs.com/lamian/p/3983497.html
http://kb.cnblogs.com/page/209100/
http://blog.csdn.net/whuslei/article/details/6667471/
http://www.cnblogs.com/Jessy/p/3535612.html
http://www.cnblogs.com/softidea/p/6062147.html(TIME_WAIT)